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Current Perspectives on Gliomas 

           Tevfik YILMAZ1 

Background 

Accurate classification of the central nervous system is essential for prognosis 

determination and optimal treatment planning (1). The fifth edition of the World 

Health Organization Classification of Central Nervous System Tumors (WHO 

CNS 5), published in 2021, represents the sixth international standard for 

classifying brain and spinal cord tumors. While histology and 

immunohistochemistry remain fundamental, this classification emphasizes a 

more effective integration of advanced molecular diagnostic techniques (2,3). 

Molecular biomarkers have gained significant importance, as they 

provide both supportive and defining information in diagnosis, thereby 

aiming to enhance clinicopathological utility. Since the first classification 

of central nervous system tumors was published in 1979, subsequent 

updates have been released at intervals; however, the most recent edition 

was issued in a relatively short timeframe (3). Rapid advancements in the 

understanding of the molecular underpinnings of central nervous system 

tumors have necessitated this update, as molecular alterations are now 

recognized to be as critical as histopathological features for accurate 

diagnosis, prognostic stratification, and therapeutic decision-making (4). 

This classification introduces several general changes in terminology. 

Diagnoses now employ an integrated approach that considers histological 

features, CNS WHO grade, and molecular findings (1). In this classification, 

WHO grades have transitioned from Roman to Arabic numerals. Grading is 

conducted within each tumor type under the integrated diagnostic framework. 

The term 'anaplasia' has been discontinued, with 'WHO grade 3' now preferred. 

Additionally, grades are expressed as 'CNS WHO grade …' (5). An additional 

modification in terminology includes 'not otherwise specified (NOS)' and 'not 

elsewhere classified (NEC)'. NOS refers to cases where the required molecular 

tests for CNS lesion classification are lacking, while NEC applies when 

molecular testing has been conducted but yields insufficient data for more 

detailed classification (6). 

 
1 Prof. Dr., Dicle University, Faculty of Medicine, Department of Neurosurgery, Diyarbakir/Turkey, 
ORCID: 0000-0002-1444-3246, kartaltevfik@hotmail.com 
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Based on the classification described in WHO CNS 5, the innovations 

concerning glial tumors will be summarized. This book will examine the section 

on glial tumors from the WHO CNS 5 classification under the headings outlined 

below. 

Gliomas, Glioneuronal Tumors, and Neuronal Tumors 

Adult-Type Diffuse Gliomas 

• Astrocytoma, IDH-mutant 

• Oligodendroglioma, IDH-mutant, and 1p/19q-codeleted 

• Glioblastoma, IDH-wildtype 

Pediatric-Type Diffuse Low-Grade Gliomas 

• Diffuse astrocytoma, MYB- or MYBL1-altered 

• Angiocentric glioma 

• Polymorphous low-grade neuroepithelial tumor of the young 

• Diffuse low-grade glioma, MAPK pathway-altered 

Pediatric-Type Diffuse High-Grade Gliomas 

• Diffuse midline glioma, H3 K27-altered 

• Diffuse hemispheric glioma, H3 G34-mutant 

• Diffuse pediatric-type high-grade glioma, H3-wildtype and IDH-

wildtype 

• Infant-type hemispheric glioma 

Circumscribed Astrocytic Gliomas 

• Pilocytic astrocytoma 

• High-grade astrocytoma with piloid features 

• Pleomorphic xanthoastrocytoma 

• Subependymal giant cell astrocytoma 

• Chordoid glioma 

• Astroblastoma, MN1-altered 
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Euronal and Neuronal Tumors 

• Ganglioglioma 

• Desmoplastic infantile ganglioglioma / Desmoplastic infantile 

astrocytoma 

• Dysembryoplastic neuroepithelial tumor 

• Diffuse glioneuronal tumor with oligodendroglioma-like features and 

nuclear clusters 

• Papillary glioneuronal tumor 

• Rosette-forming glioneuronal tumor 

• Myxoid glioneuronal tumor 

• Diffuse leptomeningeal glioneuronal tumor 

• Gangliocytoma 

• Multinodular and vacuolating neuronal tumor 

• Dysplastic cerebellar gangliocytoma (Lhermitte–Duclos disease) 

• Central neurocytoma 

• Extraventricular neurocytoma 

• Cerebellar liponeurocytoma 

Ependymal Tumors 

• Supratentorial Ependymoma 

o Supratentorial ependymoma, ZFTA fusion-positive 

o Supratentorial ependymoma, YAP1 fusion-positive 

• Posterior Fossa Ependymoma 

o Posterior fossa ependymoma, group PFA 

o Posterior fossa ependymoma, group PFB 

• Spinal Ependymoma 

o Spinal ependymoma, MYCN-amplified 

• Myxopapillary ependymoma 

• Subependymoma 
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Adult Type Diffuse Gliomas 

Baris ALTUN1    

Molecular Classification of Adult Diffuse Gliomas  

The classification of central nervous system (CNS) tumours has traditionally 

been based on histopathological features (1).  However, this approach often led 

to variable results between physicians and was insufficient to distinguish tumours 

with similar morphological features but different biological behaviours (2). This 

made the standardisation of diagnostic and therapeutic approaches significantly 

difficult.  

The 2016 World Health Organisation (WHO) classification was the first to use 

specific molecular alterations in the diagnosis of some tumours (1). However, the 

2021 WHO classification changed this approach, ushering in a new era in which 

more than 40 tumour types and subtypes are defined according to their molecular 

characteristics (3). This radical change reclassified many tumours, including 

gliomas, under new categories such as "adult-type diffuse gliomas" (3).  

The 2021 WHO classification divided adult-type diffuse gliomas into three 

main categories: isocitrate dehydrogenase (IDH)-mutant astrocytoma; IDH-

mutant, 1p/19q-codeleted oligodendroglioma; and IDH-wildtype glioblastoma. 

In this new classification, "entity" is used instead of "type" and "subtype" is used 

instead of "variant" (1). 

These molecular changes have not only provided a better diagnostic tool but 

also changed the basis of clinical practice (3). Molecular markers are used to 

determine the different biological properties of gliomas, malignant character, 

invasion ability and response to treatment (4). One of the most advanced 

techniques showing the importance of these molecular data is DNA methylation 

profiling. This method has started to play a critical role for future classifications 

by providing high sensitivity in tumour identification (5). As a result, these 

molecular changes directly affect patient diagnosis and treatment as well as 

clinical trials (3). 

The table below summarises the differences introduced by the 2021 WHO 

classification for adult diffuse gliomas. 

 
1 * M.D., Nusaybin Public Hospital, Department of Neurosurgery, Diyarbakir/Turkey,  

ORCID: 0000-0002-2727-1025, barisaltundr@gmail.com 
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Tumour Subtype Descriptive Molecular 

Properties 

WHO Grade 

IDH-mutant Astrocytoma IDH mutation, CDKN2A/B 

homozygous deletion, ATRX and 

p53 mutations 

grade 2, 3, or 4 

IDH-mutant, 1p/19q-

codeleted 

Oligodendroglioma 

IDH mutation, 1p/19q codeletion grade 2 or 3 

IDH-wildtype Glioblastoma IDH-wildtype, H3-wildtype, and at 

least one histological or genetic 

feature (TERT mutation, EGFR 

amplification, +7/-10 

chromosomal abnormality) 

grade 4 

Table 1. 2021 WHO classification for adult diffuse gliomas 

 

IDH-Mutant Astrocytomas 

IDH-mutant astrocytomas are infiltrative central nervous system tumours 

classified as grade 2, 3 or 4 according to histological features according to the 

2021 WHO classification. These tumours usually occur in young and middle-

aged adults and have a relatively better prognosis than IDH-wildtype tumours (6). 

Molecular genetics of these tumours is critical not only for diagnosis but also for 

determining response to treatment and prognosis (7). 

Epidemiology:  

IDH-mutant astrocytomas are more common in young and middle-aged adults 

and the mean age at diagnosis is 30-40 years (8). According to a study conducted 

in Germany, the incidence rate for newly diagnosed IDH-mutant gliomas 

(including astrocytomas and oligodendrogliomas) is 0.6 per 100,000. 

Historically, approximately 86% of grade 2 gliomas and 60% of grade 3 gliomas 

diagnosed before the 2021 WHO classification have IDH mutations (8). A recent 

study has shown that patients aged 55 years and older have a worse overall 

survival rate in IDH-mutant astrocytoma compared to younger patients (9). 

Clinical Findings:  

IDH-mutant astrocytomas are generally slow growing lesions with indistinct 

borders (10). Due to the slow growth rate of these tumours, symptoms may 
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develop over years (11). Seizures (up to 60%) are frequently among the 

presenting complaints (10). Other common symptoms include headache, 

neurocognitive and cognitive problems, hemiparasias, gait and balance disorders. 

Diagnosis:  

IDH-mutant astrocytomas are diagnosed by integration of histopathological 

evaluation and molecular analyses. The 2021 WHO classification emphasises the 

importance of molecular findings in the classification of these tumours. 

Demonstration of the presence of IDH mutation in tumour tissue is a basic 

criterion for diagnosis. In addition, while histological features such as mitotic 

activity, microvascular proliferation and necrosis are used in grading, the 

detection of homozygous deletion of the CDKN2A/B gene is a molecular finding 

that causes the tumour to be reclassified as grade 4. Radiologically, T2-FLAIR 

mismatch sign is considered a characteristic finding for these tumours (12). 

Imaging:  

Low-grade (grade 2) tumours show high signal intensity in T2-weighted 

sequences on MRI, typically do not show contrast enhancement and have low 

cerebral blood flow (rCBV) values on dynamic perfusion MRI. Although not 

specific for this tumour type, T2-fluid-attenuated inversion recovery (FLAIR) 

mismatch sign is a characteristic radiological finding for low-grade IDH-mutant 

astrocytomas (13). High-grade astrocytomas (grades 3 and 4) may show contrast 

uptake and high rCBV areas, while grade 4 tumours often show central necrosis 

areas (14). 

Molecular Markers: 

IDH mutation is the main genetic disorder of these tumours and leads to 

metabolic production of 2-hydroxyglutarate (2-HG). This process, which causes 

epigenetic and metabolic changes, also makes these tumours vulnerable to 

targeted therapies. Mutations in the ATRX and p53 genes are also very common 

in these tumours. p53 mutations are found in more than 90% of cases and ATRX 

mutations in more than 70%. Especially R273C hotspot mutation in TP53 gene 

is associated with faster progression and shorter survival compared to other TP53 

mutations. The presence of CDKN2A/B homozygous deletion is one of the most 

important molecular features leading to classification of the tumour as grade 4 

even in the absence of high-grade histological findings such as microvascular 

proliferation and necrosis (15). 
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Treatment:  

The basis of treatment strategies is maximal safe surgical resection. A 

retrospective analysis shows that each 1 cm3 increase in postoperative tumour 

volume is associated with worse survival in IDH-mutant astrocytomas (16). 

Depending on the recurrence risk of the disease, adjuvant treatments such as 

radiation and chemotherapy (temozolomide) may be applied after surgery. 

However, studies suggest that adjuvant radiotherapy administered within the first 

3 months after diagnosis may be associated with shorter overall survival 

compared to delayed radiotherapy. IDH inhibitors, especially vorasidenib, one of 

the new generation targeted therapies, received FDA approval for significantly 

prolonging progression-free survival in grade 2 IDH-mutant gliomas in the Phase 

3 INDIGO trial (17). 

Prognosis:  

IDH-mutant gliomas have a better survival rate than IDH-wildtype gliomas; 

one-year overall survival rates are 89% and 60%, respectively (18). The grade of 

the tumour, age of the patient, resection size and molecular markers play a critical 

role in determining the prognosis (9). While CDKN2A/B homozygous deletion 

is associated with an aggressive prognosis, it has been reported that patients with 

ATRX mutation have a better survival rate, while those with p53 R273C hotspot 

mutation have a worse survival rate (12). 

IDH-Mutant and 1p/19q Coding Oligodendrogliomas 

Oligodendrogliomas are adult-type gliomas with a basic genetic defect 

involving IDH mutation and 1p/19q codeletion, which is the loss of the short arm 

of chromosome 1 (1p) and the long arm of chromosome 19 (19q). These tumours 

are graded as grade 2 or 3 according to their histological features (1). 

Oligodendrogliomas are rare and slow growing brain tumours and typically occur 

in the cerebral hemispheres, most commonly in the frontal lobes (19). 

Epidemiology:  

Oligodendrogliomas are rare tumours with an incidence rate of 0.2 per 

100,000 and account for approximately 5% of all primary CNS tumours. It is the 

third most common primary brain neoplasm after glioblastoma and diffuse 

astrocytoma. It is most common between 35-45 years of age and is more common 

in males than females. Male/female ratio is 1.1-2. Although these tumours are 

rare in children, they have been reported more frequently between the ages of 6-

12 years (19). 
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Clinical Findings:  

The most common clinical finding of oligodendrogliomas is epileptic seizures 

seen in approximately 60% of patients (15). Other symptoms may include 

headache, neurocognitive and cognitive problems, side signs and focal 

neurological deficits depending on the affected cortical region. Due to the slow 

growth rate of these tumours, symptoms may be ignored by patients for years and 

tumours may reach large sizes(20). 

Diagnosis:  

The diagnosis of oligodendroglioma is based on the detection of IDH mutation 

and 1p/19q codeletion in chromosomal arms in addition to histological findings 

(12). The presence of these two genetic alterations are mandatory molecular 

markers for the diagnosis of oligodendroglioma. This genetic disorder is seen in 

70% to 90% of patients and has diagnostic significance (21). TERT promoter 

mutations are also frequently found in these tumours (22). Histopathological 

examination of tumour tissue obtained by biopsy or resection typically has a fried 

egg appearance, but molecular tests are required for definitive diagnosis. 

Imaging:  

Radiologically, these tumours may resemble astrocytomas as infiltrative and 

malignant lesions (14). However, the most important radiological feature that 

distinguishes oligodendrogliomas is the presence of macro calcifications that can 

frequently be seen on computed tomography. In contrast to astrocytomas, 

oligodendrogliomas may show small foci of contrast uptake and increased rCBV 

values in perfusion sequences (23). 

Molecular Markers:  

1p/19q codeletion, which is the main genetic disorder of these tumours, is seen 

in 70-90% of cases. This genetic alteration is associated with a better prognosis 

and increased sensitivity to radiotherapy and chemotherapy. Almost all 

oligodendrogliomas have IDH1 or IDH2 mutations. TERT promoter mutations 

are also frequently found in these tumours, but TERT-wildtype subgroups may 

exhibit different characteristics such as younger age and better clinical course 

(24). CDKN2A/B homozygous deletion is an important poor prognostic marker 

associated with aggressive behaviour and shorter progression-free survival. 

Unlike astrocytomas, this does not change the WHO grade of 

oligodendrogliomas. 
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Treatment:  

The first step of treatment is surgery to obtain tissue for diagnosis and to 

ensure the safest possible removal of the tumour. For high-risk patients, 

radiotherapy and chemotherapy (temozolomide or procarbazine, lomustine, 

vincristine -PCV) can be applied after surgery (25). According to the results of 

the Phase 3 INDIGO trial, vorasidenib, an IDH inhibitor, has become an 

important treatment option as it prolongs progression-free survival in patients 

with low risk of recurrence after surgery and has received FDA approval as of 

August 2024 (17). 

Prognosis:  

The general prognosis of oligodendrogliomas is better than other glioma 

subtypes with a 5-year relative survival rate of 79.5% (14). IDH mutation and 

1p/19q codeletion are important molecular markers associated with a better 

prognosis (15). Prognosis depends on various factors such as tumour grade, 

location, extent of resection, age of the patient and genetic findings (14). TERT-

wildtype genetic mutation has been shown to be associated with a better 

progression-free survival (26). 

IDH-Wild-Type Glioblastomas 

Glioblastoma (GBM) is the most common primary malignant brain tumour in 

adults with high mortality (7). It has a poor prognosis due to its aggressive and 

rapidly progressive clinical course (13). Glioblastomas are rapidly proliferating 

tumours originating from neuroglial stem cells (27). 

Epidemiology:  

Glioblastoma accounts for 14.5% of all primary CNS tumours and 48.6% of 

all malignant primary CNS tumours. The annual incidence rate is 3.23 per 

100,000. The mean age at diagnosis is 65 years and the incidence peaks between 

the ages of 75-85 years, reaching 15.30 per 100,000. It is 1.59 times more 

common in males than females and 1.99 times more common in Caucasian than 

in African-American patients (28). 

Clinical Findings:  

Glioblastomas may cause rapidly progressive neurological symptoms due to 

their aggressive nature. Patients with molecular glioblastoma (mol-GBM), a 

newly defined subtype of IDH-wildtype glioblastoma, are less likely to develop 

preoperative motor dysfunction but more likely to develop epilepsy compared to 

histological glioblastomas (hist-GBM). Common symptoms seen in other glioma 
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types, such as headache and focal neurological deficits, are also present in 

glioblastoma (29). 

Diagnosis:  

According to the 2021 WHO classification, GBM is defined as a diffuse and 

astrocytic glioma and has the characteristics of IDH-wildtype and H3-wildtype. 

At least one of the histological or genetic features such as microvascular 

proliferation, necrosis, TERT promoter mutation, EGFR gene amplification and 

chromosomal +7/-10 abnormalities must be present for the diagnosis to be made 

(1). 

Imaging:  

Glioblastoma is usually seen as lesions showing contrast enhancement on 

MRI, but this is not always the case. The newly defined "molecular glioblastoma" 

(mol-GBM) subtype may contain lower contrast enhancement and intratumoural 

necrosis compared to histological glioblastomas (hist-GBM). A subset of IDH-

wildtype glioblastomas may exhibit low-grade radiological appearance and may 

not show contrast enhancement (30). These tumours are reported to show 

different histopathological and molecular features compared to conventional 

GBM. In one study, 87.5% of newly diagnosed IDH-wildtype glioma patients had 

tumours with contrast enhancement, while 12.5% had tumours without contrast 

enhancement. This emphasises that radiological findings alone are not sufficient 

for diagnosis and molecular profiling is mandatory (29). 

Molecular Markers:  

IDH-wildtype and H3-wildtype mutations are the main diagnostic criteria. 

Additional molecular features include TERT promoter mutation, EGFR 

amplification and chromosomal +7/-10 abnormalities. O6-methylguanine-DNA 

methyltransferase (MGMT) promoter methylation is one of the most important 

biomarkers predicting response to TMZ treatment; methylation suppresses gene 

expression, making the tumour more sensitive to the drug. PTEN loss and 

KMT5B alteration have also been reported as important biomarkers for prognosis 

(31). 

Treatment:  

The standard treatment for glioblastoma is a four-stage approach involving a 

combination of surgery, radiotherapy and temozolomide (TMZ) chemotherapy. 

Surgery is the mainstay of treatment to reduce the mass effect and to obtain tissue 

for molecular testing. However, complete resection is usually not possible due to 

the diffuse infiltrative nature of glioblastoma (32). After surgery, radiotherapy 



19 

and concurrent TMZ chemotherapy are followed by maintenance TMZ treatment 

(31). Resistance to TMZ is one of the important causes of treatment failure in 

approximately 50% of patients. This resistance is associated with high expression 

of MGMT protein (in case the MGMT promoter is not methylated) and 

overactivation of DNA repair pathways such as MMR (mismatch repair) and 

BER (base excision repair) (33). 

Prognosis:  

The prognosis of glioblastoma is poor. The mean overall survival is 

approximately 12.6 to 16 months and the 5-year survival rate is 6.8%. Prognostic 

factors include age, gender (worse in men), tumour invasion into deep brain 

structures or functional areas. MGMT promoter methylation is associated with a 

better prognosis (8). Thenewly defined mol-GBM subtype has a higher survival 

than hist-GBM, but this difference is not statistically significant (34). 

Targeted Treatment Strategies in Adult Gliomas 

The limited success of conventional therapies has increased the interest in 

targeted and molecular-based therapies in recent years. One of the most important 

approaches in this field is inhibitors targeting IDH mutation. IDH mutant cells 

are highly dependent on the NAD+ recovery pathway because they have altered 

metabolic pathways (35). This provides a basis for therapies targeting these 

pathways. Several IDH inhibitors such as Ivosidenib, Olutasidenib, IDH305, 

TQB3454 and HMPL-306 have been developed and tested in clinical trials. It has 

been observed that Ivosidenib is effective in grade 2 and 3 IDH-mutant tumours 

that do not show contrast uptake, but its efficacy is more limited in contrast 

enhancing tumours (36).  

An inhibitor named IDH305 was stopped during a phase I study due to the 

narrow therapeutic window (26). New generation dual inhibitors such as 

LY3410738 and HMPL-306 targeting IDH1 and IDH2 simultaneously have been 

developed (35).  

Another promising strategy is Arginine Depletion Therapy (ADT). 

Glioblastoma cells deficient in ASL, ASS1 or OCT genes cannot synthesise 

arginine, an essential amino acid, endogenously and become dependent on 

exogenous arginine (37). ADT reduces arginine levels in the peripheral blood, 

depriving these tumour cells of nutrients and causing their death. This therapy not 

only offers metabolic targeting but also affects immune cells in the tumour 

microenvironment. By promoting the conversion of immunosuppressive 

microglia to a pro-inflammatory phenotype and the activation of T cells, it 
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potentiates the glioma-killing effect through a multifaceted mechanism. The 

safety of ADT has been confirmed in clinical trials. In one phase 1 study, the 

combination of ADI-PEG20 with cisplatin and pemetrexed in patients with 

relapsed high-grade glioma resulted in stable disease in 80% of patients. In 

another phase 1B study, the combination of ADI-PEG20 with TMZ and 

radiotherapy resulted in a median progression-free survival of 9.5 months. 

However, the possibility of developing resistance to ADT through re-expression 

of the ASS1 gene is an issue that requires further investigation (37). 

Other emerging targeted therapies for the treatment of glioma include 

NAMPT inhibitors and CDK9 inhibitors. NAMPT (nicotinamide 

phosphoribosyltransferase) inhibitors target the NAD+ recovery pathway on 

which IDH mutant cancer cells are highly dependent (38). In early clinical trials, 

their efficacy was limited due to dose-limiting toxicities such as bone marrow 

suppression and retinal toxicity. However, new approaches such as encapsulation 

with nanoparticles and direct delivery to the brain are promising to increase the 

therapeutic index. In addition, a phase 1/2 clinical trial investigating the efficacy 

and safety of the CDK9 inhibitor zotiraciclib as a single agent in patients with 

relapsed IDH-mutant gliomas is ongoing (39). Preclinical data support that 

zotiraciclib is effective at lower and less toxic doses in IDH mutant tumours (40). 
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Pediatric Low-Grade Gliomas 

Kamuran AYDIN1 

In children, approximately 35% of tumors are low-grade gliomas, and 60% of 

supratentorial hemispheric tumors fall into this category. The annual incidence is 

about 5 cases per million. Low-grade gliomas are classified as World Health 

Organization (WHO) grade 1 or 2 tumors. The most common clinical 

manifestation of low-grade glial tumors is seizure, and these tumors are strongly 

associated with treatment-resistant epilepsy (1). Depending on their location, they 

may also cause speech impairment, motor weakness, visual disturbances, and 

memory deficits. Mass effect may lead to headache, nausea, and signs of 

increased intracranial pressure. 

Radiological imaging plays a crucial role in diagnosis, treatment planning, and 

follow-up. Computed tomography (CT) and magnetic resonance imaging (MRI) 

are usually sufficient; however, advanced modalities such as functional MRI, MR 

spectroscopy, perfusion MRI, and positron emission tomography (PET) are 

increasingly utilized in the evaluation of low-grade gliomas (2,3). 

Clinical Presentation 

The most frequent clinical finding is seizure. Other common manifestations 

include headache, nausea, and vomiting, with headaches often occurring in the 

morning. Focal neurological deficits may be present depending on tumor 

location. Frontal lobe gliomas may cause personality changes and movement 

disorders; parietal tumors may present with reading difficulties; and temporal 

lobe gliomas are frequently associated with seizures and speech impairment (2,3). 

WHO Classification of Pediatric Diffuse Low-Grade Gliomas 

In the most recent WHO classification (2021), diffuse gliomas were 

categorized separately for adults and children. Although histological features 

appear similar, prognosis and molecular genetics differ significantly between 

these groups (2). 

Pediatric-type diffuse low-grade gliomas are classified into four subtypes: 

Diffuse astrocytoma, MYB- or MYBL1-altered 

Angiocentric glioma 
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Polymorphous low-grade neuroepithelial tumor of the young 

Diffuse low-grade glioma, MAPK pathway-altered 

Diffuse Astrocytoma, MYB- or MYBL1-Altered 

Diffuse astrocytoma is a newly recognized tumor entity in the 2021 central 

nervous system (CNS) WHO classification. It is a diffusely infiltrating astrocytic 

neoplasm with histological features indistinguishable from other astrocytic 

tumors. It primarily occurs in children, with a median age of 5 years, though cases 

have been reported up to 26 years of age. No significant sex predilection is noted. 

This tumor is strongly associated with treatment-resistant epilepsy and may 

also cause movement disorders. It most commonly involves the cerebral cortex, 

followed by cerebral white matter and basal ganglia. Gross total resection is 

associated with favorable prognosis and high rates of postoperative seizure 

control, with up to 90% of patients achieving seizure freedom. Diffuse 

astrocytoma is classified as CNS WHO grade 1. Long-term studies report a 10-

year progression-free survival rate of 89.6% and an overall survival rate of 

95.2%. 

Molecularly, alterations involve MYB or MYBL1, excluding the MYB::QKI 

fusion. Frequently reported partner genes include PCDHGA1, MMP16, and 

MAML2. Histologically, mitotic activity is absent or minimal, Ki-67 proliferation 

index is low, and neither microvascular proliferation nor necrosis is observed. 

Tumor cells are GFAP-positive (1,2,3,7–9). 

Radiology: 

On MRI, MYB- or MYBL1-altered tumors appear hyperintense or mixed on 

T2/FLAIR, hypointense on T1, and are typically well-demarcated with mild 

edema. They usually do not demonstrate restricted diffusion or contrast 

enhancement. MR spectroscopy shows elevated choline and reduced N-

acetylaspartate (1,2,4–7). 

Differential Diagnosis: 

Oligodendroglioma, typically frontal in location with gyriform calcification, 

and diffuse hemispheric glioma, a higher-grade tumor with cystic, hemorrhagic, 

and necrotic features and irregular contrast enhancement, should be considered 

(2). 
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Angiocentric Glioma 

Angiocentric glioma is classified as a CNS WHO grade 1 tumor. It 

predominantly affects patients under 20 years of age, with no significant gender 

difference. A defining molecular alteration is the MYB::QKI fusion, found in 

87% of cases and in 41% of all pediatric low-grade gliomas. It is strongly 

associated with epilepsy in children and young adults. 

Histologically, angiocentric glioma is composed of monomorphous bipolar 

fusiform cells with a perivascular (angiocentric) growth pattern. These tumors are 

slow-growing and have a favorable prognosis after complete surgical resection, 

with low recurrence rates and frequent postoperative seizure improvement. Ki-

67 labeling index is typically <5%, with no necrosis or microvascular 

proliferation. Tumor cells are GFAP-positive, Olig2-negative, and often 

immunoreactive for epithelial membrane antigen, which is a distinguishing 

feature (1,2,3,10–12). 

Localization and Imaging: 

Angiocentric gliomas are usually located in the supratentorial cortex and 

subcortical white matter, most commonly the temporal lobe, followed by the 

frontal lobe, parietal lobe, brainstem, and thalamus. CT may show low, high, or 

mixed density, with calcification being rare. MRI typically shows well-defined, 

T1 iso- to hyperintense, T2 hyperintense lesions, sometimes with cystic changes. 

Contrast enhancement is uncommon but can occur (>25% of cases). MR 

spectroscopy demonstrates elevated creatine and choline, reduced N-

acetylaspartate, and occasionally lactate peaks. Associations with focal cortical 

dysplasia have also been described (1,2,4–7). 

Differential Diagnosis: 

Ganglioglioma: typically contains cystic and calcified components, with 

enhancement in ~50% of cases. 

Pleomorphic xanthoastrocytoma: more commonly demonstrates hemorrhage 

on CT, whereas calcification is rare. 

Dysembryoplastic neuroepithelial tumor (DNET): often associated with 

cortical thickening and typically demonstrates less calcification compared to 

angiocentric glioma (2). 
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Polymorphous Low-Grade Neuroepithelial Tumor of the Young (PLNTY) 

Polymorphous low-grade neuroepithelial tumor of the young (PLNTY) is a 

newly recognized entity in the 2021 WHO classification of central nervous 

system (CNS) tumors. It predominantly occurs in children and young adults with 

epilepsy but has also been reported in the fourth and fifth decades of life. A slight 

female predominance is observed. The most common presenting symptom is 

seizure, while additional manifestations vary depending on tumor localization. 

PLNTY is classified as a CNS WHO grade 1 tumor and is typically located in the 

cortex or subcortical white matter. 

Molecularly, PLNTY is characterized by alterations in the MAPK signaling 

pathway. Immunohistochemically, tumors are strongly positive for GFAP and 

OLIG2, while negative for IDH1 (R132H), EMA, NeuN, and neuroendocrine 

markers. Genetic abnormalities most frequently include BRAF V600E mutations 

(~40%) or FGFR2/3 fusions (~50%). BRAF V600E mutations are more common 

in older patients, whereas FGFR fusions (e.g., FGFR2-KIAA1598, FGFR2-

CTNNA3, FGFR-TACC3) are more frequent in younger patients. 

Infiltrative growth with oligodendroglioma-like features may be observed; 

however, IDH, ATRX, and TP53 mutations are not compatible with the diagnosis 

of PLNTY. Tumors typically exhibit irregular CD34 staining and a low Ki-67 

proliferation index. 

Grossly, PLNTY often presents as a well-circumscribed, solid–cystic lesion 

with peripheral calcified and cystic components. Histologically, the defining 

features include oligodendroglioma-like components admixed with fibrillary, 

fusiform, spindle-shaped, or pleomorphic astrocytic cells. Indistinct perivascular 

pseudorosettes and focal cortical dysplasia in adjacent cortex may be present. 

Calcification is frequent and often coarse (1,2,3,13–15). 

Radiology: 

On imaging, PLNTY typically appears as a calcified, well-defined 

supratentorial cortical or subcortical mass, most commonly in the temporal lobe, 

followed by the occipital, frontal, and parietal lobes, with a right-hemispheric 

predominance. CT frequently demonstrates granular calcification. On MRI, 

lesions often have mixed solid–cystic morphology, are hyperintense on T2-

weighted imaging, and show no diffusion restriction. A distinctive “salt-and-

pepper” sign on T2WI has been described. PLNTY may also occur with cortical 

dysplasia (1,2,4–6). 
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Differential diagnosis: 

Ganglioblastoma: typically isointense to gray matter on T1-weighted imaging, 

with less frequent calcification and cystic change than PLNTY. 

Dysembryoplastic neuroepithelial tumor (DNET): usually exhibits more 

intratumoral septation and less calcification. 

Oligodendroglioma: characterized by gyriform calcification, which is useful 

in distinguishing it from PLNTY (2). 

Diffuse Low-Grade Glioma, MAPK Pathway-Altered 

Diffuse low-grade glioma, MAPK pathway-altered, is another new diagnostic 

category introduced in the CNS WHO 2021 classification. It predominantly 

affects children. Histologically, these tumors resemble other diffuse low-grade 

gliomas, necessitating molecular confirmation of MAPK pathway alterations for 

diagnosis. 

Tumors are composed of low- to moderately cellular, monomorphic cells with 

oligodendroglioma-like or astrocytic features that infiltrate the brain parenchyma. 

Mitotic activity is absent or rare, and microvascular proliferation and necrosis are 

not observed. Immunohistochemically, GFAP and OLIG2 are positive. 

Common molecular alterations include: 

FGFR1 tyrosine kinase domain duplication 

FGFR1 mutations or fusions 

BRAF V600E mutation 

BRAF fusions or insertion mutations 

Tumors with FGFR1 alterations often display oligodendroglioma-like 

histology. The WHO grading of these tumors remains under debate (1,4,5,16,17). 

Radiology: 

Calcification is frequent in cortical tumors. On MRI, lesions are hypointense 

on T1 and hyperintense on T2-weighted images. Post-contrast studies usually 

demonstrate marked and heterogeneous enhancement, though atypical non-

enhancing tumors are also reported. Tumors in the diencephalon are generally 

solid and lobulated, showing strong and homogeneous enhancement without 

necrosis, edema, or significant mass effect (2). 
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Differential diagnosis: 

Ganglioblastoma: typically isointense to gray matter on T1 with minimal 

calcification and cystic changes. 

DNET: characterized by more intratumoral septation and less calcification. 

PLNTY: distinguished by its coarse calcification and oligodendroglioma-like 

components (2). 

Treatment and Prognosis 

Surgical timing depends on radiological findings and the clinical condition of 

the patient. Emergency surgery is indicated for patients with acute hydrocephalus 

or uncontrolled seizures. External ventricular drainage may be performed 

simultaneously in hydrocephalus cases. Elective surgery is recommended for 

stable patients, with the primary objectives being histological diagnosis and 

maximal safe resection. Gross total resection is associated with improved survival 

and seizure control. 

Preoperative functional mapping using fMRI, diffusion tensor imaging, 

somatosensory evoked potentials, and intraoperative electrocorticography 

(ECoG) can identify eloquent cortical areas and seizure foci, guiding safer and 

more effective resections (18,19). 

When complete surgical resection is not feasible, treatment options include 

targeted molecular therapies, chemotherapy, and radiotherapy. Radiotherapy is 

generally avoided in children due to risks of neurocognitive decline and 

malignant transformation; chemotherapy is preferred. Common regimens 

include: 

Carboplatin monotherapy (monthly administration, reduced infection risk) 

Carboplatin + vincristine (CV) (preferred due to lower risk of secondary 

malignancy/infertility compared to TPCV) 

TPCV regimen (thioguanine, procarbazine, CCNU, vincristine) 

Vinblastine monotherapy 

Stereotactic radiosurgery and brachytherapy are additional options aimed at 

minimizing damage to normal brain tissue in children. 

Prognosis 

5-year survival after gross total resection: 75–100% 

5-year survival after subtotal resection without adjuvant therapy: 50–90% 



32 

Chemotherapy regimens in newly diagnosed pediatric low-grade gliomas 

achieve 3-year progression-free survival of 50–80%, depending on the protocol 

(2,3,17,18-20). 
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Pediatric-Type Diffuse High-Grade Gliomas 

Pinar AYDIN OZTURK1 

Pediatric-type diffuse high-grade gliomas (PDHGG) rank among the most 

prevalent malignant brain tumors in the pediatric population and constitute a 

major cause of cancer-related mortality during childhood (1). PDHGG have an 

estimated incidence of 1.1 to 1.78 cases per 100,000 pediatric patients and 

comprise over 40% of mortality among all childhood brain tumors. The reported 

median overall survival of PDHGG varies from 10 to 73 months (2). Despite its 

broad age distribution, PDHGG is most frequently diagnosed in patients aged 15 

to 19 years (3). 

These tumors were previously classified as anaplastic astrocytoma (WHO 

grade 3) and glioblastoma (WHO grade 4) (2).  However, in 2021, the World 

Health Organization (WHO) published the fifth edition of the Classification of 

Tumors of the Central Nervous System, which effectively represents the sixth 

version of the revised classification for brain and spinal cord tumors (4,5). This 

classification introduced the first distinction between adult and pediatric diffuse 

gliomas. PDHGG have since been recognized as a separate category, reflecting 

their unique clinical course and molecular profile compared to adult-type gliomas 

(5). A key distinguishing characteristic of pediatric gliomas compared to adult 

gliomas is the elevated frequency of mutations in chromatin-related proteins in 

pediatric tumors (6). 

A major determinant in the classification of PDHGG as a separate glioma 

subgroup was the identification of mutations involving the histones H3F3A (K27 

and G34) and HIST1H3B1 (7). Mutations in histone genes define specific 

PDHGG subgroups, namely diffuse midline glioma, H3K27-altered, and diffuse 

hemispheric glioma, H3 G34-mutant. The majority of these histone point 

mutations are located in the histone variant H3.3, accounting for 83% of K27M 

mutations and all (100%) G34R/V mutations (8). 

Prognosis; Even with aggressive treatment regimens, the five-year survival 

rate for PDHGG remains below 10% (2). Survival estimates for PDHGG vary 

according to their anatomical location, such as supratentorial, brainstem, or spinal 

cord regions. For tumors located in the supratentorial compartment, the five-year 

overall survival rate is less than 20%, with the majority of patients succumbing 
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to the disease within two years of diagnosis (9, 10). In cases of brainstem tumors, 

the median survival time is less than one year (11). 

According to the fifth and latest edition of the WHO Classification, PDHGGs 

are classified into four distinct subtypes: 

1. Diffuse midline glioma, H3 K27-altered 

2. Diffuse hemispheric glioma, H3 G34-mutant 

3. Diffuse pediatric-type high-grade glioma, H3-wildtype and IDH-

wildtype 

4. Infant-type hemispheric glioma 

 
1. Diffuse midline glioma, H3 K27-altered 

Diffuse midline glioma (DMG), H3 K27-altered (trimethylation of lysine 27 

on the histone H3 protein), typically involves classic midline structures such as 

the brainstem, thalamus, cerebellum, gangliocapsular region, cerebellar 

peduncles, third ventricle, hypothalamus, pineal region, and spinal cord 

(12)(Figure 1). In the United States, they account for approximately 20% of all 

pediatric central nervous system tumors (13). Diffuse intrinsic pontine glioma 

(DIPG) represents about 10–15% of all pediatric brain neoplasms and 

approximately 75% of all pediatric brainstem neoplasms (14). DMGs are most 

frequently observed in children between 5 and 10 years of age (15). DIPGs show 

no gender predilection, with an average age 7 years (16).   

 

 
Fig 1. Regions affected by DMGs 
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Clinical Presentation:  
DIPG most often presents with the classic triad of cranial nerve palsy, 

pyramidal tract involvement, and ataxia (14). Multiple cranial neuropathies, long 

tract signs (including hyperreflexia, clonus, increased muscle tone, and a positive 

Babinski sign), and ataxia may also be observed (12).   

Radiogical Findings: 

Magnetic resonance imaging (MRI) remains the gold standard for diagnosing 

DMG, particularly DIPG. Imaging findings of DMG include sharply demarcated 

or diffuse growth patterns, regions of necrosis and hemorrhage, variable contrast 

enhancement, and heterogeneous signal intensities on both T1- and T2-weighted 

sequences (14). Additionally, positron emission tomography may serve as a 

complementary diagnostic modality in DMG evaluation (17).    

DIPG findings commonly consist of T1- and T2-hyperintense lesions affecting 

over 50% of the pontine region, with associated high perfusion and restricted 

diffusion. Diagnosis of DIPG is typically made using MRI in conjunction with 

clinical presentation, without the need for histopathological confirmation (18).   

Histopathology:   

The tumor is characterized by a diffuse proliferation of small monomorphic 

cells and can display polymorphic differentiation including astrocytic, 

oligodendroglial, epithelioid, piloid, giant cell, or undifferentiated patterns. Areas 

of microvascular proliferation and necrosis, along with mitotic figures, may be 

observed. These tumors are considered WHO grade 4 irrespective of necrosis or 

vascular proliferation. The EGFR subtype is distinguished by prominent mitotic 

activity (14).    

Immunohistochemistry and Molecular Analysis: 

Immunohistochemistry plays a key role in mutation detection, especially for 

the diagnosis of H3K27M-mutant DMG. The tumor typically exhibits positivity 

for OLIG2, MAP2, and S100, while the EGFR mutant subtype shows negativity 

for OLIG2 and positivity for GFAP. Positive nuclear staining for the H3 K27M 

antibody combined with negative nuclear staining for H3 K27me3 facilitates the 

detection of dispersed tumor cells in infiltrative regions (14).     

Somatic mutations in histone H3 variants encoded by the H3F3A and 

HIST1H3B genes, specifically the H3K27M (p.Lys27Met) mutation, have been 

identified in the majority of biopsied DIPGs and broadly across DMGs (19). The 

H3K27 mutation may be associated with BRAF V600E mutation and, less 

commonly, with IDH1 mutation (14). Additionally, other molecular alterations, 
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such as overexpression of the enhancer of zeste homolog inhibitory protein 

(EZHIP) and alterations in the epidermal growth factor receptor (EGFR), have 

been demonstrated in pediatric DMG (20). 

Treatment:             

No established curative treatment exists for DMG. Alongside surgical 

intervention, radiotherapy (commonly delivered as 54–60 Gy in daily fractions 

of 1.8–2 Gy over six weeks) and chemotherapy, including individualized 

therapies, are employed. Despite these efforts, prognosis remains unfavorable 

(21). Reirradiation is the sole effective approach for recurrent disease, 

functioning as a palliative measure to alleviate symptoms and potentially improve 

neurological status, rather than offering a cure (22).  

Routine biopsy in DIPG continues to be debated and is indicated primarily in 

the presence of atypical radiological findings (12). The efficacy of temozolomide 

has been reported in tumors with IDH mutations (23). 

Prognosis: 

While dissemination at diagnosis is uncommon, secondary metastases occur 

in about 13% of cases and can manifest as intraparenchymal, ventricular, or 

leptomeningeal disease (24). Prognostic factors include the extent of surgical 

resection, with gross total or extended resection correlating with increased 

survival in tumors amenable to surgery (25). In contrast, resection does not appear 

to improve prognosis in thalamic tumors. Age under three years is associated with 

longer survival, highlighting its role as a prognostic indicator (12). 

Diffuse hemispheric glioma, H3 G34-mutant 

Diffuse hemispheric glioma (DHG), H3 G34-mutant, is a widely infiltrative 

WHO grade 4 astrocytoma of the cerebral hemispheres. However, it is recognized 

as a distinct tumor entity in the 2021 WHO Classification of Central Nervous 

System Tumors.  

Despite its classification as a glioma, transcriptomic and epigenomic analyses 

indicate a neuronal origin. The average age at presentation is 15 years (26). 
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Clinical Findings: 

DHG most commonly involves multiple lobes, with predominant involvement 

of the frontal and parietal lobes (Figure 2). Clinical manifestations are variable 

and depend on tumor location, including seizures and motor or sensory 

impairments (27). Cortical tumors arising in the temporal and parietal lobes 

represent 16% of cases (28). 

 
Fig 2. Regions affected by DHGs 

 
Radiological Findings: 

MRI demonstrates findings commonly seen in other gliomas, such as contrast 

enhancement, necrosis, hemorrhage, and edema, while leptomeningeal and 

ependymal dissemination may also be observed (29). 

Histopathology:   

These cellular tumors exhibit rapid mitotic activity along with palisading 

necrosis and microvascular proliferation, resembling glioblastoma. A subset of 

tumors displays an embryonal (PNET-like) appearance characterized by 

hyperchromatic nuclei, scant cytoplasm, and structures resembling Homer-

Wright rosettes (30). 

Immunohistochemistry and Molecular Analysis: 

These tumors exhibit loss of expression of alpha-thalassemia/mental 

retardation syndrome X-linked (ATRX), diffuse positivity for p53, and are 

immunonegative for OLIG2. The Ki-67 proliferation marker shows high labeling. 

They are designated WHO grade 4 tumors irrespective of microvascular 
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proliferation or necrosis. Immunohistochemical antibodies for detecting the 

G34R/V mutation have recently become available (27). 

Co-occurring TP53 and ATRX mutations are observed in nearly 90% of cases, 

with frequent methylation of the MGMT promoter. Among DHGs with H3 G34 

mutations, 50–70% carry mutations in the platelet-derived growth factor receptor 

alpha (PDGFRA) gene (26). 

A glioblastoma-like morphology correlates with elevated GFAP expression, 

whereas the embryonal-like pattern is characterized by diffuse synaptophysin 

positivity and focal GFAP staining. Notably, both patterns show negativity for 

OLIG2 (31). 

Treatment:             

Attempts at treatment have included surgical gross total or near-total resection, 

radiotherapy, and chemotherapy with both temozolomide-based and non-

temozolomide protocols (32).  

The identification of PDGFRA mutations, present in over 50% of cases, may 

provide novel therapeutic opportunities (31). EGFR amplification is targeted with 

agents such as Gefitinib, Erlotinib, and Afatinib (23). 

Prognosis: 

The median overall survival for patients with G34-mutant tumors is 22 

months. Presence of MGMT promoter methylation is associated with improved 

prognosis, whereas amplification of oncogenes such as EGFR, CDK4, and 

MDM2 correlates with poorer outcomes (31).  

A more extensive surgical resection and increased patient age correlate with 

better prognosis. The average time to progression is 10 months, and median 

survival after progression is approximately 5 months (32). 

2. Diffuse pediatric-type high-grade glioma, H3-wildtype and IDH-

wildtype 

Diffuse pediatric-type high-grade gliomas (DPHGG), characterized by H3-

wildtype and IDH-wildtype status, are predominantly supratentorial tumors with 

poor prognosis (2).   

  



44 

Clinical Findings: 

DPHGGs, characterized by H3-wildtype and IDH-wildtype status, 

predominantly localize to the cerebral hemispheres and present with symptoms 

related to motor or sensory deficits (33)(Figure 3) 

 

 
Fig 3. Regions affected by DPHGGs 

 
Radiogical Findings: 

Radiological findings include contrast enhancement, hypointensity on T1-

weighted images, hyperintensity on T2/FLAIR sequences, indistinct tumor 

margins, and peritumoral edema (34). 

Histopathology:   

DPHGG characterized by H3-wildtype and IDH-wildtype profiles may 

present with glioblastoma-like or embryonal primitive morphologies. The 

MYCN subtype often shows a biphasic pattern with both a widespread 

component and nodules limited to surrounding normal brain tissue. Radiation-

associated RTK1 subtype tumors may feature prominent myxoid stromal changes 

(33). 

Immunohistochemistry and Molecular Analysis: 

DPHGGs with H3-wildtype and IDH-wildtype status lack IDH and H3 

mutations. These tumors are subclassified into three groups based on DNA 

methylation profiles: RTK1, associated with platelet-derived growth factor 

receptor alpha (PDGFRA) amplification; RTK1 also includes tumors arising in 

Lynch syndrome or mismatch repair (MMR) deficiency syndromes; RTK2, 

characterized by EGFR amplification and telomerase reverse transcriptase 
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(TERT) promoter mutations; and the MYCN subtype, defined by MYCN 

amplification (35). 

Focal positivity for GFAP and OLIG2 is observed. The RTK1 subtype may 

demonstrate loss of MSH2/MSH6 corresponding to germline mutations (33). 

Treatment:             

Management of DPHGG parallels that of other PDHGGs and includes surgical 

resection, chemoradiotherapy, targeted therapies, and immunotherapeutic 

approaches. PDGFRA inhibitors, including dasatinib, have demonstrated 

encouraging outcomes in this subtype (23). 

Prognosis: 

DPHGG that are H3/IDH-wildtype generally have a poor prognosis. The 

MYCN subtype of DPHGG is associated with the lowest survival rates. Pontine 

tumors in this subgroup behave more aggressively than their supratentorial 

counterparts, with median overall survival times of 16.5 months for supratentorial 

HGG-MYCN and 1.5 months for pontine HGG-MYCN (2). 

3. Infant-type hemispheric glioma 

The primary diagnostic criteria for infant-type hemispheric glioma (INHG) 

encompass a combination of clinicopathological and molecular features (2). 

Clinical Findings: 

INHG predominantly occurs in early childhood, with most cases presenting 

within the first year of life. Symptoms are acute and nonspecific, including 

seizures, lethargy, and irritability. Additionally, congenital cases characterized by 

macrocephaly and bulging fontanelles have been reported (36). 

Radiogical Findings: 

Radiological evaluation demonstrates a superficially located cerebral 

hemispheric mass with potential necrotic regions and prominent cystic structures 

(34)(Figure 4). 
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Fig 4. Regions affected by  INHGs 

 
Histopathology:   

INHG displays high cellularity, nuclear pleomorphism, elevated mitotic 

activity, necrosis, and endothelial proliferation consistent with high-grade 

morphology. Initial diagnoses often include glioblastoma or desmoplastic 

infantile ganglioglioma/astrocytoma (DIG/DIA). Gemistocytic differentiation is 

infrequently observed. Tumors harboring anaplastic lymphoma kinase (ALK) 

fusions may demonstrate ependymal differentiation, a biphasic pattern 

comprising both low- and high-grade components, or a ganglion cell component 

(37). 

Immunohistochemistry and Molecular Analysis: 

INHG exhibits rearrangements involving the NTRK1/2/3, ROS1, ALK, or 

MET genes, resulting in fusion of receptor tyrosine kinases (RTKs) containing 

intracellular tyrosine kinase domains. 

Microdeletions or copy number amplifications on chromosomes result in 

ALK1 gene fusions with diverse fusion partners. A high Ki-67 proliferation index 

is often observed (38). ALK fusion-positive tumors demonstrate 

immunopositivity for GFAP and OLIG2, along with ALK expression (37). 

Treatment:             

Chemoradiotherapy has been utilized alongside surgical resection in INHG; 

however, standard chemotherapy and radiotherapy yield limited efficacy. It is 

important to recognize the significant risk of severe neurological sequelae 

associated with radiation therapy, especially in children younger than 3 years. 
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Receptor tyrosine kinase gene fusions—including ALK, ROS1, NTRK, and 

MET—are frequently observed, and preclinical data suggest kinase inhibitors 

may represent a promising therapeutic strategy for this tumor type (39). 

Prognosis: 

Tumors positive for ALK fusions demonstrate a more favorable prognosis 

than those harboring ROS1 or NTRK fusions. The application of receptor 

tyrosine kinase (RTK) inhibitors, including Larotrectinib for NTRK fusions and 

Alectinib for ALK fusions, holds potential to alter the prognosis of these tumors 

(36). 
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Circumscribed Astrocytic Gliomas 

Abdurrahman ARPA1 

In 2021, the World Health Organization (WHO) introduced the 5th edition of 

the Classification of Tumors of the Central Nervous System, incorporating 

substantial revisions that underscore the pivotal role of molecular diagnostics in 

tumor characterization (1). Significant and novel classifications have been 

introduced within the glial tumor category, most notably the distinction between 

adult-type and pediatric-type glial tumors, which have been categorized 

separately for the first time (2). Additionally, a new category termed 

“circumscribed astrocytic gliomas” has been established (1). 

The tumors included in this category are defined as: 

1. Pilocytic astrocytoma 

2. Pleomorphic xanthoastrocytoma 

3. Subependymal giant cell astrocytoma 

4. Chordoid glioma 

5. Astroblastoma, MN1-altered 

6. High-grade astrocytoma with piloid features 

1. Pilocytic Astrocytomas 

1.1 Epidemiology 

Pilocytic astrocytoma (PA) represents approximately 5% of all primary brain 

tumors and predominantly affects children and young adults. There is no 

recognized gender predilection. The incidence peaks during adolescence, and PA 

constitutes the most common pediatric glioma, accounting for roughly one-third 

of all gliomas in this age group (3).  

1.2 Histopathology and Cytology 

Pilocytic astrocytoma is an astrocytic neoplasm containing variable amounts 

of solid and microcystic components, pilocytic cells, Rosenthal fibers, and 

eosinophilic granular bodies. It is designated as a WHO grade 1 lesion (3). These 

tumors are typically circumscribed and display a range of histological patterns 
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(4). Rare variants showing oligodendroglioma-like morphology have been linked 

to FGFR1 mutations (5). 

1.3 Molecular Genetics and Immunophenotyping 

Although most cases are sporadic, pilocytic astrocytoma may also arise in 

association with neurodevelopmental disorders such as Neurofibromatosis type 1 

(NF1) and Noonan syndrome. It represents the most common central nervous 

system tumor in NF1. The tumor is thought to result from mutations affecting the 

mitogen-activated protein kinase (MAPK) signaling pathway. In addition, BRAF, 

FGFR1, and NTRK mutations have also been reported (6).  

Immunohistochemical analysis typically demonstrates positive staining for 

GFAP, OLIG2, ATRX, synaptophysin, and p16 (with loss of p16 expression 

correlating with poorer prognosis), as well as S100, SOX10, MAP-2, and BRAF 

V600E. Negative staining is observed for IDH1 R132H, H3 K27M, and p53 

(weak, low, or absent). Detection of the BRAF-KIAA1549 fusion by fluorescence 

in situ hybridization (FISH) is associated with a more favorable clinical outcome 

(3). 

1.4 Clinical Presentation:  

PA most commonly arises from midline neural structures, with the cerebellum 

being the predominant site. Other frequent locations include the optic pathway, 

hypothalamus, basal ganglia, and brainstem; however, they may develop in any 

region of the CNS. These low-grade, indolent tumors can cause clinical 

manifestations such as focal neurological deficits or hydrocephalus resulting 

from ventricular obstruction, contingent on their anatomical site (7). 

1.5 Radiogical Findings: 

PA typically presents as a solid-cystic mass featuring a contrast-enhancing 

mural nodule and may frequently demonstrate calcifications. On T1-weighted 

MRI, the solid component is generally isointense or hypointense relative to gray 

matter, while on T2-weighted sequences it appears hyperintense (8). 

1.6. Subtypes: 

1.6.1. Pilomyxoid Astrocytoma (PMA) 

This is a subtype of PA observed in infants and young children, frequently 

involving the hypothalamic and chiasmatic regions. Unlike classic PA, Rosenthal 

fibers and eosinophilic granular bodies are typically absent. Their location often 

precludes complete surgical resection, resulting in a poorer prognosis compared 

to conventional PA (9). 
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1.6.2. Pilocytic Astrocytoma with Histologic Features of Anaplasia 

Malignant transformation in PA is rare; however, it may occur following 

radiation exposure or in syndromic cases such as NF1. These tumors can exhibit 

features of anaplasia, including increased infiltration, heightened cellularity, 

elevated mitotic activity, and enhanced vascularization (10). 

1.7. Prognosis: 

Pilocytic astrocytomas are WHO grade 1 neoplasms with generally excellent 

clinical outcomes. Prognosis is closely linked to the completeness of surgical 

excision. Rarely, spontaneous tumor regression can be observed (11). Tumors 

situated in regions that hinder total resection have a poorer prognosis; in such 

scenarios, chemotherapy with agents including procarbazine and vincristine may 

be considered alongside radiotherapy (12). Detection of the BRAF:KIAA1549 

fusion correlates with favorable prognosis (3). 

2. Pleomorphic Xanthoastrocytoma 

2.1 Epidemiology:  

Pleomorphic xanthoastrocytoma (PXA) is a rare, low-grade brain tumor (13). 

It accounts for less than 0.3% of primary central nervous system neoplasms and 

typically arises in late childhood or early adulthood, with no apparent sex 

predilection (3).  

2.2 Histopathology and Cytology:  

Pleomorphic xanthoastrocytoma is defined by the presence of large 

pleomorphic multinucleated cells, spindle cells, lipid-rich cells, abundant 

eosinophilic granular bodies, and reticulin accumulation. Molecularly, it often 

exhibits BRAF V600E mutations or other MAPK pathway gene alterations, 

alongside homozygous CDKN2A/B deletions. Most PXAs are located 

supratentorially, showing a particular affinity for the temporal lobe (14). 

2.3 Molecular Genetics and Immunophenotyping: 

The most frequently mutated gene in PXAs is BRAF, which encodes an 

intracellular component of the MAPK pathway. BRAF is one of the three RAF 

(rapidly accelerated fibrosarcoma) kinases with the highest oncogenic potential 

and is the most commonly altered in these tumors (15, 16). This mutation is 

present in approximately 70% of PXAs. Alterations in p53, p16, and chromosome 

10 have also been implicated in PXA pathogenesis. These neoplasms are 

classified as WHO grade 2 or 3 (17). 
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Immunohistochemically, PXAs typically demonstrate positive staining for 

GFAP, vimentin, S100, CD34 (variable), focal synaptophysin, and BRAF V600. 

Negative staining is observed for IDH1 R132H and p53 (3). 

2.4 Clinical Presentation:  

Pleomorphic xanthoastrocytomas are predominantly supratentorial and show 

a marked preference for the temporal lobe, with only a minority arising in the 

cerebellar hemispheres. They generally affect superficial cortical areas (17). 

Seizures represent the most frequent clinical presentation, whereas symptoms 

related to raised intracranial pressure—such as headache, nausea, vomiting, and 

changes in consciousness—may also occur (18). Asymptomatic cases are rare. 

Complete surgical excision is typically feasible, but tumors situated in deep 

structures, including the brainstem, may preclude total resection (19). 

2.5 Radiogical Findings: 

Despite their generally favorable prognosis, PXAs may radiologically mimic 

high-grade gliomas. These lesions are well-circumscribed, superficial, and in 

contact with the meninges, exhibiting both solid and cystic components. On 

contrast-enhanced computed tomography (CT), the cystic portion appears 

hypodense, whereas the solid component is hypo- to isodense. Calcifications may 

be present within the solid portion, and both components typically demonstrate 

contrast enhancement. On MRI, the solid component is isointense on T1-

weighted images, hyperintense on T2-weighted images, and exhibits 

heterogeneous post-gadolinium enhancement, with peripheral enhancement of 

the cystic component. Minimal vasogenic edema may occasionally be observed 

surrounding the lesion. Leptomeningeal dissemination occurs in a subset of 

patients. Angiographically, PXAs are hypovascular (17). 

2.6 Prognosis: 

These glial neoplasms generally demonstrate a favorable prognosis. Clinical 

outcomes are strongly dependent on the completeness of surgical excision and 

the presence of anaplastic features. Total resection has been associated with long-

term remission. The 5-year overall survival rate is reported as approximately 90% 

for WHO grade II tumors and 57% for grade III lesions. In cases where total 

resection cannot be achieved, adjuvant treatments—including radiotherapy and 

chemotherapy—are often recommended due to recurrence risk. Tumors 

harboring the BRAF V600E mutation may respond favorably to targeted therapy 

with BRAF inhibitors such as vemurafenib (20). 
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3. Subependymal Giant Cell Astrocytoma  

3.1 Epidemiology:  

Subependymal giant cell astrocytoma (SEGA) predominantly occurs in 

children and young adults. It is most frequently observed in patients with tuberous 

sclerosis complex (TSC), representing the most common central nervous system 

tumor in this population. These periventricular lesions are composed of large 

spindle-shaped, ganglion-like astrocytic cells (21). 

3.2 Histopathology and Cytology:  

SEGAs are well-circumscribed, cellular tumors composed of large 

gemistocyte-like cells with abundant cytoplasm. The prototypical cell is 

polygonal with glassy cytoplasm. Tumor cells are typically organized in whorl-

like arrangements or broad fascicles. Gemistocyte-like cells exhibit large nuclei 

with prominent nucleoli and occasional intranuclear inclusions. Accumulations 

of plasma cells and mast cells may also be present. These neoplasms are classified 

as WHO Grade I (22). 

3.3 Molecular Genetics and Immunophenotyping: 

SEGAs are predominantly caused by mutations in the TSC1 or TSC2 genes. 

Inactivation of either gene results in activation of the mammalian target of 

rapamycin (mTOR) pathway. Positive immunostaining: GFAP, S100, OLIG2, 

synaptophysin, NeuN, MAP2, SOX2, and pS6V Negative immunostaining: IDH1 

R132H, CD34, HMB45 (3). 

3.4 Clinical Presentation:  

Subependymal giant cell astrocytomas originate from the subependymal 

region adjacent to the lateral or third ventricles, commonly near the foramen of 

Monro. As a result, the majority of patients exhibit clinical signs of elevated 

intracranial pressure secondary to obstructive hydrocephalus. Instances of 

spontaneous hemorrhage have also been documented (23). 

3.5 Radiogical Findings: 

SEGAs usually present as solid intraventricular tumors near the foramen of 

Monro, often exhibiting punctate calcifications. Enlargement of the ventricles is 

commonly seen. MRI reveals a solid mass that is hyperintense on T2-weighted 

sequences, iso- to hypointense on T1-weighted sequences relative to gray matter, 

with prominent contrast enhancement (24). 
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3.6 Prognosis: 

Postoperative results after complete surgical resection are typically very 

favorable. However, in individuals with tuberous sclerosis complex, concomitant 

comorbidities can adversely affect outcomes. Tumors that are partially resected 

or recurrent have been effectively treated using mTOR pathway inhibitors (25, 

26). 

4. Chordoid Glioma 

4.1 Epidemiology:  

Chordoid gliomas (CG) account for less than 0.1% of primary brain tumors. 

They predominantly affect adults, with a mean age of 45 years, and the female-

to-male ratio is approximately 3:1 (27). 

4.2 Histopathology and Cytology:  

Chordoid glioma is a solid, non-infiltrative tumor composed of irregular cords 

or clusters of epithelioid cells embedded in a variably mucinous stroma, 

exhibiting chordoma-like features. Tumor cells have abundant eosinophilic 

cytoplasm and round to oval nuclei with inconspicuous nucleoli. 

Lymphoplasmacytic infiltration, often accompanied by Russell bodies, is 

characteristic. Occasionally, chondroid metaplasia or papillary structures may be 

present, while vascular proliferation and necrosis are absent (28). It is classified 

as WHO Grade II (1). 

4.3 Molecular Genetics and Immunophenotyping: 

These tumors specifically harbor mutations in the PRKCA gene (29). 

Immunohistochemistry – positive markers: GFAP, vimentin, CD34, EMA, and 

cytokeratin. 

Immunohistochemistry – negative markers: Brachyury, SSTR2A (3). 

4.4 Clinical Presentation:  

These tumors arise from the anterior portion of the third ventricle. By causing 

obstructive hydrocephalus, they may lead to headache, nausea, vomiting, and 

altered consciousness (30). Compression within the third ventricle can also result 

in endocrine abnormalities, such as diabetes insipidus or panhypopituitarism (31). 

4.5 Radiogical Findings: 

Cranial imaging reveals chordoid gliomas as well-defined, solid, and densely 

contrast-enhancing masses occupying the third ventricle. They are typically 

tightly adherent to the ventricular walls. On T1-weighted sequences with contrast, 
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the lesions show homogeneous enhancement and isointensity relative to gray 

matter (32). 

4.6 Prognosis: 

Limited data are available regarding the long-term behavior and prognosis of 

chordoid gliomas. Gross total resection is considered the optimal treatment. 

Adjuvant radiosurgery may be employed following partial resection. Tumor 

recurrence has been reported (33). 

5. Astroblastoma, MN1 altered 

5.1 Epidemiology:  

These tumors can occur from early childhood through the fourth decade of 

life, with a higher prevalence in females (34). 

5.2 Histopathology and Cytology:  

The histological hallmark is the presence of astroblastic pseudorosettes, 

characterized by glial cells with broad or slightly tapered processes arranged 

around a central blood vessel. These tumors exhibit vascular hyalinization and 

may occasionally display anaplastic features (35). The WHO has not assigned a 

specific grade. 

5.3 Molecular Genetics and Immunophenotyping: 

Astroblastomas are characterized by structural rearrangements of the MN1 

gene. The two most common fusion partners are BEND2 and CXXC5, which 

result in a gain of function of the MN1 gene. MN1 fusions show a strong 

correlation with the typical histological features of astroblastoma (34, 36).  

Immunohistochemistry demonstrates considerable variability. 

5.4 Clinical Presentation:  

These tumors predominantly localize to the peripheral regions of the cerebral 

hemispheres. Patients typically present with signs of increased intracranial 

pressure due to mass effect, seizures, or focal neurological deficits (37). 

5.5 Radiogical Findings: 

Predominantly peripheral supratentorial lesions, these tumors display 

heterogeneous contrast uptake and minimal surrounding vasogenic edema. They 

may be solid or cystic, with occasional multiple cysts. The solid portion can 

appear bubbly, and calcifications are frequently observed. Larger masses often 

show cystic degeneration and areas of necrosis, while hemorrhage and adjacent 
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brain infiltration are uncommon (38). On imaging, the solid component appears 

hypointense on T1-weighted and hyperintense on T2-weighted MRI sequences 

relative to gray matter, usually enhancing with contrast (39). 

5.6 Prognosis: 

Long-term studies providing insight into prognosis are limited. Gross total 

resection is theoretically recommended. In cases where surgery is not feasible or 

total resection cannot be achieved, chemotherapy or radiotherapy may be 

beneficial. 

6. High-grade Astrocytoma with Piloid Features 

6.1 Epidemiology:  

This is a rare tumor predominantly seen in middle-aged adults. While most of 

these tumors arise de novo, a small subset develops from pre-existing pilocytic 

astrocytomas (40). 

6.2 Histopathology and Cytology:  

Histologically, these tumors exhibit considerable heterogeneity. Necrosis and 

microvascular proliferation may mimic PXA or glioblastoma, while the presence 

of eosinophilic granular bodies and Rosenthal fibers is reminiscent of PA. 

Consequently, supplementary molecular analyses are essential for accurate 

diagnosis (41, 42). They are assigned a WHO Grade III classification (1). 

6.3 Molecular Genetics and Immunophenotyping: 

Genetic alterations may include changes in MAPK pathway genes (e.g., NF1, 

FGFR1, or BRAF), homozygous CDKN2A/B deletions, and/or ATRX mutations 

(43). 

Positive markers: GFAP, OLIG2, nestin, and p53. 

Negative markers: IDH1 R132H, ATRX, H3F3A K27M, and p16 (3). 

6.4 Clinical Presentation:  

These tumors can arise anywhere within the central nervous system, with a 

predilection for the posterior fossa. Clinical manifestations depend on the tumor’s 

anatomical location (44). 

6.5 Radiogical Findings: 

These tumors generally appear well-circumscribed and hyperintense on T2-

weighted MRI, containing focal areas of hypointensity, and show hyperintensity 

on T1-weighted sequences. Diffusion restriction is not present (45, 46). 
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6.6 Prognosis: 

Long-term studies providing insights into the prognosis are limited. Gross 

total resection is theoretically recommended. In cases where surgery is not 

feasible or total resection cannot be achieved, chemotherapy or radiotherapy may 

be beneficial. 
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Neuronal and Mixed Glioneuronal Tumours 

                Sezer Onur GUNARA1 

Neuronal and mixed glioneuronal neoplasms constitute less than 2% of all 

central nervous system tumors in the adult population; however, they represent 

up to 10% of central nervous system neoplasms in pediatric patients. 

Histopathological evaluation reveals subtypes containing only neuronal cells 

(dysplastic gangliocytoma, central neurocytoma, extraventricular neurocytoma, 

etc.) as well as subtypes comprising both neuronal and neuroglial components 

(ganglioglioma, dysembryoplastic neuroepithelial tumor, diffuse leptomeningeal 

glioneuronal tumor, etc.) (1,2). 

In the 2021 World Health Organization (WHO) classification, all tumors 

within this group except for dysplastic gangliocytoma can be differentiated based 

on their DNA methylation profiles. In other words, each of these tumors can be 

identified at the epigenetic level, allowing treatment planning to be tailored 

accordingly (3). 

According to the 2016 World Health Organization (WHO) grading system, all 

tumors in this group are classified as low-grade, with the exception of anaplastic 

ganglioglioma (grade 3). Given their slow-growing nature, the initial clinical 

manifestation is typically seizures rather than headache or signs of increased 

intracranial pressure. Headache, nausea, and vomiting may be present in patients 

with hydrocephalus. Psychiatric manifestations are among the uncommon 

symptoms, occurring predominantly in patients under the age of 10 years. 

Patients presenting initially with panic attack diagnoses were later recognized to 

experience ictal panic, a seizure subtype. Ictal panic manifests as an abrupt, 

intense fear occurring immediately prior to an epileptic event. EEG studies 

demonstrated pathological epileptic discharges in the amygdala, hippocampus, 

and insular regions, substantiating the epileptic origin of these clinical 

manifestations (4,5). 

1. Disembryoplastic Neuroepithelial Tumor (DNET) 

Tumors classified within this group encompass dysembryoplastic 

neuroepithelial tumors, gangliogliomas/gangliogliomatosis, desmoplastic 

infantile astrocytomas/desmoplastic infantile gangliomas, dysplastic 

gangliogliomatosis of the cerebellum, papillary glioneuronal tumor, rosette-
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forming glioneuronal tumors, diffuse leptomeningeal glioneuronal tumor, 

cerebellar liponeurocytoma, central neurocytoma, and extraventricular 

neurocytomas. 

Dysembryoplastic neuroepithelial tumors are most frequently encountered in 

pediatric and young adult populations, with peak prevalence in individuals aged 

10 to 25 years. The WHO classifies DNETs as Grade I neoplasms, generally 

located in the cortex and characterized as mixed glioneuronal tumors. While 

DNETs can develop throughout the brain, they are observed in the temporal lobe 

in nearly %66 of cases (6). 

The majority of DNET cases approximately %80 are benign, indolent tumors 

that typically manifest with focal seizure activity upon clinical presentation (7). 

In patients younger than 20 years, seizures develop in %90 of cases and 

frequently demonstrate resistance to anticonvulsant therapy (8). Postoperative 

seizure control improves by approximately 80% within the first year following 

surgery (6). 

On MRI, DNETs typically present as gray, foamy-appearing lesions on T1-

weighted sequences localized to the subcortical area, with increased signal 

intensity on T2-weighted and FLAIR sequences compared to cortical tissue. The 

characteristic hyperintense rim observed on T2 and FLAIR images around the 

lesion is considered pathognomonic for DNET and serves to distinguish it from 

gangliogliomas and focal cortical dysplasia (9). DNETs are generally non-

contrast-enhancing lesions, and peritumoral edema is typically absent (10). 

Macroscopically, the tumor presents with nodular and cystic formations 

resulting in cortical thickening. Histologically, it is characterized by specific glial 

elements and the presence of nodular zones (9). 

Although these tumors rarely exhibit aggressive behavior, treatment may be 

necessary in symptomatic cases, such as those with severe epilepsy. Surgical 

resection remains the cornerstone of management. Complete surgical resection is 

associated with improved clinical outcomes; notably, more than 80% of patients 

who undergo gross total resection and have a shorter duration of epilepsy achieve 

seizure freedom at one year. Radiotherapy and chemotherapy have no established 

role in the management of DNET. Malignant transformation is exceedingly rare 

and has been reported only in cases involving complex-type DNET and 

extratemporal locations (11,12) 
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2. Ganglioma and Gangliomasitoma 

Gangliomas are the most frequently encountered mixed glioneuronal tumors, 

representing roughly 0.5–1% of central nervous system tumors overall (13). 

Although gangliomas can occur across all age groups their incidence peaks 

notably in young adults aged 15 to 20 years (14). Gangliomas, characterized as 

slow-growing lesions, most commonly present with drug-resistant epilepsy. They 

are known to induce complex partial seizures (15). Gangliogliomas involving the 

amygdala may be associated with chronic psychosis in addition to epilepsy. In 

younger patients with gangliomas located in the temporal lobe or cingulate gyrus, 

seizures can occasionally present clinically as ictal panic (16,17). 

Gangliomas and gangliositomas can present in various anatomical sites such 

as the brainstem, cerebellum, spinal cord, optic nerve, and amygdala, with the 

highest incidence in the temporal lobe (~70%) and the frontal lobe (~10%) (18). 

Gangliomas and gangliomasitomas located in the optic nerve or spinal cord are 

associated with higher recurrence rates following surgical intervention (19). 

On imaging, these tumors typically present as cystic lesions featuring a solid 

or mural nodule, superficially situated without causing mass effect on CT. Areas 

of hemorrhage or necrosis are rarely detected, although calcifications may be 

noted. Adjacent bony erosion secondary to pressure exerted by gangliomas and 

gangliomasitomas can also be observed (20). On MRI evaluation, these lesions 

are generally non-contrast-enhancing and show minimal surrounding edema. 

They present as hypointense on T1-weighted images and hyperintense on T2-

weighted images. In nearly half of the cases, the solid tumor mass (21). 

Macroscopically, gangliomas present as firm, gray lesions causing cortical 

expansion. Histologically, they exhibit a combination of atypical ganglion cells 

and neoplastic glial elements (9). Histopathology reveals ganglionic neuronal 

tumor cells positive for synaptophysin and/or chromogranin A, which can exhibit 

binucleation, distinguishing them from normal residual neurons. Glial tumor cells 

expressing OLIG2 and/or GFAP are also present, demonstrating heterogeneous 

morphology predominantly of piloid astrocytic type, with occasional 

oligodendroglial differentiation. The Ki-67 proliferation index is generally below 

3%. These tumors frequently exhibit eosinophilic granular bodies, conspicuous 

lymphocytic infiltration, and CD34-immunoreactive stellate cells (21). Except 

for anaplastic gangliomas (WHO Grade III), gangliomas are considered benign 

neoplasms, with gross total resection representing the surgical objective. Subtotal 

resection correlates with a 5-year survival rate of approximately 62%, compared 

to 78% in cases with complete tumor removal. Patients who undergo gross total 
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resection demonstrate superior seizure control outcomes (22). Postoperative 

radiotherapy is advised after gross total resection for anaplastic gangliomas 

(23,24).  

3. Desmoplastic Infantile Astrocytoma and Ganglioma 

Desmoplastic infantile astrocytomas (DIA) and desmoplastic infantile 

gangliomas (DIG) are large cystic benign tumors (WHO Grade 1) presenting 

during infancy, predominantly involving the parietal and frontal lobes, and 

typically affecting both the cortex and leptomeninges. DIA are composed 

exclusively of neuronal cells, whereas DIG contain both neuronal cells and 

astrocytic components (25). Clinical manifestations of large and aggressive 

tumors identified radiologically include increased head circumference, fontanelle 

bulging, and signs of elevated intracranial pressure. The solid tumor component 

is adherent to the dura mater, whereas the cystic portion lies deeper. On T2-

weighted MRI sequences, the solid component appears hypointense. A dural tail 

sign may be present due to leptomeningeal spread. These tumors are 

differentiated from infantile ganglioblastomas by the absence of diffusion 

restriction, except in areas of hemorrhage (26,27).  

While complete surgical excision remains the standard treatment, instances of 

spontaneous tumor regression have been documented following subtotal 

resection (28). 

4. Dysplastic Cerebellar Gangliocytoma (Lhermitte-Duclos Disease) 

Dysplastic cerebellar gangliocytomas, also referred to as Lhermitte-Duclos 

disease, are benign (WHO Grade 1) lesions. This rare pathology results from 

hypertrophy of the cerebellar folia due to dysplastic ganglion cells, accompanied 

by disruption of the normal cerebellar cortical architecture. These tumors may be 

asymptomatic but can also lead to hydrocephalus due to compression of the fourth 

ventricle. They can occur at any age, although they are most frequently observed 

in young and middle-aged adults (9).  

Dysplastic cerebellar gangliocytomas, which are often solitary lesions, may 

present as multiple hamartomas in association with Cowden syndrome (29). 

Characteristic features include cystic enlargement of varying sizes within the 

cerebellar folia. MRI demonstrates well-circumscribed lesions that are 

hypointense on T1 and display alternating hypo- and hyperintense layers on T2-

weighted images (30). Susceptibility-weighted imaging (SWI) demonstrates 

dilated veins as hypointense signals adjacent to the thickened cerebellar folia, 

which exhibit contrast enhancement on post-contrast imaging. Magnetic 
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resonance spectroscopy shows decreased NAA with preservation of normal 

choline peaks (31). Although surgical resection is the mainstay of treatment for 

dysplastic cerebellar gangliocytoma, tumor recurrence has been observed even in 

cases undergoing gross total resection (32). 

5. Papillary Glioneuronal Tumor 

Papillary glioneuronal tumors, predominantly observed in young adults, are 

localized, well-circumscribed, low-grade (WHO Grade 1) lesions of the cerebral 

hemispheres. They comprise both astrocytic and neuronal components. Their 

histopathological hallmark is the presence of hyalinized vascular pseudopapillae 

(25). 

Papillary glioneuronal tumors may present as cystic, solid, or mural nodular 

lesions, occasionally demonstrating opacification within the cyst. They are often 

misinterpreted as gangliogliomas on MRI, with definitive diagnosis typically 

established through histopathological evaluation. These tumors predominantly 

involve the frontal and temporal lobes but may also occur in intraventricular 

locations (23). 

These tumors are generally slow-growing, exhibiting an indolent clinical 

course, and often remain asymptomatic until hydrocephalus-related signs emerge. 

Surgical resection remains the definitive treatment, with tumor progression and 

recurrence being exceptionally rare (33). 

6. Rosette-Forming Glioneuronal Tumors 

Rosette-forming glioneuronal tumors are rare benign neoplasms (WHO grade 

I), predominantly affecting young adults. Although these tumors are most 

commonly found in the infratentorial area or within the fourth ventricle, they can 

infrequently present in the supratentorial region, cerebellum, and pineal gland. 

Clinically, patients typically present with headache and ataxia (34).  

Tumor size ranges from 1–2 cm to extensive dimensions, with an absence of 

surrounding edema. CT scans may reveal surrounding calcifications or bleeding. 

On MRI, these lesions are characterized by hypointensity on T1-weighted images 

and hyperintensity on T2-weighted images, often manifesting as multicystic 

masses exhibiting heterogeneous enhancement after contrast administration (9). 

Pathologically, these tumors are characterized by astrocytic and neuronal cells 

forming perivascular pseudorosettes (34). Surgical resection remains the 

treatment of choice in symptomatic patients (9). 
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7. Diffuse Leptomeningeal Glioneuronal Tumors 

Diffuse leptomeningeal glioneuronal tumors, formerly described in the 

literature as primary leptomeningeal oligodendrogliomatosis, were classified as 

a distinct entity among central nervous system tumors in the 2016 WHO 

classification revision. Frequently observed in pediatric patients and males, these 

tumors exhibit widespread leptomeningeal involvement, regardless of whether a 

parenchymal component is present. Diffuse leptomeningeal glioneuronal tumors 

exhibit slow growth, and patients typically present with symptoms related to 

hydrocephalus secondary to leptomeningeal involvement. The prognosis largely 

depends on the severity of the resultant hydrocephalus (35). 

On MRI, diffuse leptomeningeal glial tumors often present as widespread 

plaque-like enhancing lesions in the spinal cord, brainstem, and basal cisterns. 

These lesions are characterized by hyperintense, small cystic or nodular 

appearances on T2 sequences and primarily involve the spinal cord parenchyma 

(36). In most cases, cerebrospinal fluid cytological analysis yields negative 

results, requiring tissue sampling from the meninges to confirm diagnosis. 

Staging criteria have not been defined by the WHO, and standardized treatment 

protocols remain lacking (37). 

Surgical removal of symptomatic nodules represents the most common 

operative approach. Adjunctive therapies such as radiotherapy and 

temozolomide-based chemotherapy have been reported in the literature to 

enhance survival in pediatric patients (38). 

8. Cerebellar Liponeurocytomas 

Cerebellar liponeuroblastomas, comprising varying proportions of low-

proliferative neuronal, astrocytic, and lipomatous cells, typically present 

clinically with atypical symptoms such as headache. Lesions may present with 

clinical signs of hydrocephalus if they obstruct cerebrospinal fluid pathways (39).  

Although these tumors are classified as low-grade (WHO grade I), recurrence 

rates of up to 50% have been reported post-surgically without evidence of 

malignant transformation. Consequently, some authors advocate for their 

classification as WHO grade II. The primary treatment approach remains surgical 

resection (40). 

9. Central and Extraventricular Neurocytomas 

Central neurocytomas are predominantly WHO grade II tumors occurring 

between the ages of 20 and 50, with equal prevalence in males and females. 

Usually located at the level of the foramen of Monro within the lateral and third 
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ventricles, these indolent tumors are frequently discovered incidentally and 

commonly manifest clinically with hydrocephalus secondary to cerebrospinal 

fluid obstruction (39). Although cases of psychosis and hallucinations have been 

documented, these manifestations are exceedingly rare (40).  

On MRI, the lesions appear hyperintense on T2-weighted sequences, while 

CT imaging typically demonstrates punctate calcifications. In larger tumors, 

intralesional hemorrhage may be observed, and fluid–fluid levels can be detected 

within the cystic component (41). 

Surgical resection represents the primary treatment modality for these tumors; 

however, when complete removal is not feasible, postoperative radiotherapy has 

been reported to improve survival outcomes (42). Although the role of 

chemotherapy in the management of these tumors is not yet fully elucidated, it is 

regarded as a potentially life-saving intervention in cases of recurrence. 

Chemotherapeutic strategies may include temozolomide as monotherapy or in 

combination with radiotherapy, lomustine, and 

etoposide/cisplatin/cyclophosphamide regimens. In general, postoperative and 

post-radiotherapy recurrences are relatively rare (43). 

Extraventricular neurocytomas are WHO grade II lesions that may occur 

anywhere within the central nervous system and predominantly affect young 

adults. In approximately 50% of cases, the tumors are located in the frontal and 

temporal lobes. With 10-year survival rates inferior to those of central 

neurocytomas, these lesions are regarded as having a relatively more aggressive 

behavior (44).  

MRI findings of extraventricular neurocytomas, appearing as extra-axial 

masses, often reveal a combination of solid and cystic areas, with peritumoral 

edema frequently present around the lesion (45).  

Management follows the same principles as for central neurocytomas, and 

recurrence is uncommon except in atypical variants exhibiting necrosis or 

neovascular proliferation histologically. Radiotherapy is considered an 

adjunctive option when total tumor removal is not possible. 
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Ependymomas 

Baris ASLANOGLU1 

Ependymomas are tumors originating from ependymal cells lining the 

cerebral ventricles, forming part of the choroid plexus epithelium and located 

within the central canal of the spinal cord. Representing approximately 1.6–1.8% 

of central nervous system (CNS) tumors, ependymomas account for 5.2% of 

pediatric and about 4% of adult cases (1). According to the Central Brain Tumor 

Registry of the United States (CBTRUS), the annual incidence of ependymomas 

ranges from 0.29 to 0.6 per 100,000 population (2). The female-to-male ratio is 

approximately 1.3:1. While 90% of pediatric ependymomas are intracranial, 

approximately 65% of adult cases are spinal in location. About 70% of 

supratentorial ependymomas are found in an extraventricular location (3). 

Molecular studies have demonstrated that ependymomas exhibit distinct 

histopathological characteristics depending on their anatomical localization, 

patient age group, and tumor grade. These molecular and histopathological 

differences formed the basis for the definition of ependymoma subgroups in the 

2021 World Health Organization (WHO) classification of CNS tumors (4–7). 

WHO 2021 Updated Classification 

The 2021 WHO Classification of CNS Tumors marked a paradigm shift in the 

diagnosis of ependymomas, moving from a histopathology-based to a molecular 

subtype-based approach, distinguishing it significantly from previous 

classifications. Some lesions previously categorized in other brain tumor groups 

were reclassified as ependymomas following the identification of unique 

molecular markers, whereas tumors that histologically resembled ependymomas 

but had distinct molecular profiles were excluded.  

In this updated classification, supratentorial ependymomas are characterized 

by ZFTA, RELA, YAP1, and MAML2 fusions/mutations; posterior fossa 

ependymomas by H3 K27me3 loss and EZHIP-associated methylation profiles; 

and spinal ependymomas by MYCN amplification. Histopathologic variants such 

as “anaplastic ependymoma,” papillary, tanycytic, and clear cell subtypes, which 

were included in previous classifications, have been removed due to their limited 

clinical relevance. 

 

 
* M.D., Health Science University, Gazi Yasargil Educatin and Training Hospital, Department of 
Neurosurgery, Diyarbakir/Turkey, ORCID: 0000-0003-0623-7730, drbarisaslanoglu08@gmail.com 



85 

WHO 2021 Molecular Subtypes of Ependymoma (7) 

Supratentorial Ependymoma 

- ZFTA fusion-positive 

- YAP1 fusion-positive 

Posterior Fossa Ependymoma 

- Group PFA 

- Group PFB 

Spinal Ependymoma 

- Classic 

- MYCN-amplified 

Myxopapillary Ependymoma 

Subependymoma 

Morphologically, supratentorial and posterior fossa ependymomas are 

classified as WHO Grade 2 or Grade 3, while myxopapillary ependymomas are 

classified as WHO Grade 2. ZFTA fusion-positive and YAP1 fusion-positive 

ependymomas are typically located in the supratentorial compartment. ZFTA 

fusion-positive tumors are more common, with a median age at diagnosis of 

approximately 8 years, compared to 1.4 years for YAP1 fusion-positive tumors. 

YAP1 fusion-positive ependymomas constitute approximately 7% of 

supratentorial cases.  

Ependymomas have a 10-year survival rate of approximately 50%, with a 

slight predominance reported in female patients (4). Posterior fossa group A (PF-

A) and group B (PF-B) ependymomas are localized in the infratentorial region, 

particularly in the posterior fossa. PF-A ependymomas are more common in boys, 

with a mean age at diagnosis of 3 years, and typically occur during infancy. These 

tumors are associated with a poorer prognosis due to high recurrence and 

metastasis rates, with a 10-year overall survival rate of approximately 56% (8). 

PF-B ependymomas generally occur in young adults, with a mean age of 30 years 

and a slight female predominance. This subtype has a 10-year survival rate of 

around 88% and is associated with a more favorable prognosis (8). 

Spinal ependymomas, spinal subependymomas, and MYCN-amplified spinal 

ependymomas are most frequently located in the cervical and thoracic spinal 

cord. Spinal ependymomas are the second most common intramedullary tumors 
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in children and the most common in adults (9), accounting for approximately 30% 

of pediatric intramedullary tumors. Although spinal ependymomas with MYCN 

amplification are rare, they demonstrate a more aggressive clinical course, often 

involving multiple spinal levels and showing leptomeningeal dissemination. 

Myxopapillary ependymomas are primarily located in the caudal region of the 

spinal cord (lumbar and conus medullaris) but have rarely been reported 

intracranially. In the 2021 WHO classification, myxopapillary ependymomas 

were upgraded from grade 1 to grade 2 due to high local recurrence rates, despite 

the lack of clinical utility in molecular subtyping (6). These tumors are most 

frequently observed in the conus medullaris and filum terminale. In pediatric 

patients, the risk of cerebrospinal fluid (CSF) dissemination is higher compared 

to adults (10). 

Clinical Presentation   

The average symptom duration prior to diagnosis ranges from 3 to 6 months. 

Clinical manifestations vary depending on tumor location. Supratentorial 

ependymomas most often present with seizures (45.2%), headache (39.7%), and 

motor weakness (9.6%). Approximately 70% of posterior fossa ependymomas 

originate from the fourth ventricle and foramen of Luschka, causing fourth 

ventricle obstruction in about 90% of cases. This results in symptoms of increased 

intracranial pressure, including headache, nausea, vomiting, papilledema, and 

lethargy (11,12). 

When the cerebellum is involved, patients may exhibit imbalance, truncal and 

limb ataxia, tremor, dysdiadochokinesia, dysarthria, and nystagmus. Brainstem 

compression may lead to cranial nerve deficits involving CN VI, VII, and IX–

XII, dysphagia, dysarthria, hemiparesis or quadriparesis, and respiratory 

irregularities (13–15). 

The most common initial symptom of spinal ependymomas is localized back 

or neck pain, depending on the tumor's level (16). Due to the slow and nonspecific 

progression of symptoms, diagnosis is often delayed. Myxopapillary 

ependymomas involving the terminal spinal cord regions may affect ascending 

and descending tracts, producing low back pain as the primary symptom, while 

bowel and bladder dysfunctions occur in approximately 30% of cases (17,18). 
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Radiology 

Brain Computorize Tomography (CT) 

Ependymomas often appear as cystic, calcified, and well-circumscribed 

lesions. They may be isodense or hyperdense relative to brain parenchyma on 

computed tomography (CT). Calcifications are observed in approximately 50% 

of cases. Hemorrhage and calcified foci typically appear hyperdense (19). 

Magnetic Resonance Imaging (MRI) 

Due to intracellular myxoid accumulation and cyst formation, ependymomas 

demonstrate low signal intensity on T1-weighted images, high signal intensity on 

T2-weighted images, and intermediate-to-high signal intensity on FLAIR 

sequences compared to brain parenchyma (20). On contrast-enhanced MRI, these 

tumors frequently display heterogeneous enhancement, and diffusion-weighted 

imaging (DWI) may reveal high signal intensity. Increased vascularity often 

results in low apparent diffusion coefficient (ADC) values. Proton MR 

spectroscopy typically shows elevated choline levels and reduced N-

acetylaspartate (NAA) levels (21). Increased myoinositol levels support the 

diagnosis of ependymoma over other tumors such as medulloblastoma or 

hemangioblastoma (22). Spectroscopy is more useful in differentiating 

radionecrosis from recurrence rather than distinguishing ependymomas from 

other tumor types (23). 

Perfusion MRI is valuable for characterizing ependymomas, monitoring 

treatment response, and detecting recurrence (24). Spinal ependymomas are 

usually intramedullary and often associated with syringomyelia (25). They appear 

isointense or hypointense on T1-weighted images and hyperintense on T2-

weighted images. A low T2 signal intensity area known as the “cap sign” may be 

observed above or below the tumor due to hemosiderin deposition from chronic 

bleeding (26). Myxopapillary ependymomas typically exhibit isointense signal 

on T1-weighted and hyperintense signal on T2-weighted images (18). Their 

location in the conus medullaris with marked contrast enhancement is an 

important radiologic finding supportive of the diagnosis (25). 

Subependymomas appear isointense to hypointense on T1-weighted images 

and hyperintense on T2-weighted images, but their signal distribution is more 

homogeneous than ependymomas. They usually show minimal contrast 

enhancement and no restriction on DWI. Due to low vascularity, relative cerebral 

blood volume (rCBV) on perfusion MRI is lower than in ependymomas (27,28). 
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Differential Diagnosis 

The differential diagnosis of supratentorial ependymomas includes central 

neurocytoma, microcystic meningioma, astrocytoma, and glioblastoma 

multiforme. For posterior fossa ependymomas, astrocytoma, medulloblastoma, 

and cerebral neuroblastoma are primary considerations. The differential 

diagnosis of spinal ependymomas includes astrocytoma, metastatic tumors, 

exophytic/extramedullary schwannomas, and filum terminale paragangliomas. 

Additional differential diagnoses include abscess, encephalitis, arteriovenous 

malformations, cavernous malformations, and hemorrhage (29). 

Treatment   

Surgery remains the first and most critical step in the standard management of 

adult intracranial ependymomas.Numerous studies have identified the extent of 

resection as one of the most important prognostic factors (1,30,31). Gross total 

resection (GTR)—defined as the absence of residual tumor on post-contrast T1- 

and T2-weighted MRI obtained three months postoperatively—and infratentorial 

location are associated with longer survival (32,33). Conversely, incomplete 

(subtotal) resection is linked to a higher risk of tumor recurrence and 

cerebrospinal fluid (CSF) dissemination. In posterior fossa lesions, tumor 

encasement of cranial nerves and brainstem vasculature may limit the feasibility 

of complete removal (31). 

Ependymomas arising in the third or fourth ventricles may cause secondary 

hydrocephalus by obstructing CSF pathways, while those in the lateral ventricles 

can obstruct the Foramen of Monro, resulting in ventricular dilatation. Because 

these tumors often grow slowly, acute symptoms are uncommon. Complete 

resection typically restores normal CSF flow, thereby resolving obstructive 

hydrocephalus and obviating the need for additional CSF diversion in most cases. 

If hydrocephalus persists postoperatively, procedures such as shunting or 

endoscopic third ventriculostomy may be necessary. 

Historically, craniospinal irradiation was widely employed in ependymoma 

management. However, subsequent evidence has demonstrated that localized 

radiotherapy provides effective local control with a low risk of spinal 

dissemination. In adults, there is general agreement that postoperative 

radiotherapy should be administered in WHO Grade III tumors and in WHO 

Grade II tumors following incomplete resection (32,33). The role of radiotherapy 

after GTR in WHO Grade II ependymomas remains controversial (34). 
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Intracranial subependymomas are rare WHO Grade I tumors. Long-term 

survival is generally expected after resection; however, ill-defined tumor margins 

are associated with reduced survival (35). 

In pediatric patients, more than half of all ependymomas occur before the age 

of three (36). Surgery and radiotherapy are the primary treatment modalities, and 

postoperative radiotherapy improves local control and survival. For children 

older than three years, a total dose of 59.4 Gy (1.8 Gy/fraction) is recommended. 

Dose reduction to 54 Gy is advised in patients with impaired neurological status 

or in those under 18 months of age, with further reductions possible between 12–

18 months (37). Nonetheless, recurrence frequently occurs within the irradiated 

field, even with standard dosing, underscoring the importance of local control 

(38). For cases of subtotal resection, hypofractionated stereotactic boosts have 

been proposed in addition to conventional radiotherapy. 

Radiotherapy toxicity remains a major concern in young children. Intensity-

modulated radiotherapy (IMRT) is preferred to reduce late sequelae. Merchant et 

al. demonstrated that radiation dose is the most significant predictor of post-

treatment intelligence quotient (IQ), with even doses below 20 Gy to the 

supratentorial region negatively impacting cognitive function (39). 

The role of chemotherapy in pediatric ependymomas remains uncertain. In 

very young children, chemotherapy is often used to delay or avoid radiotherapy 

due to its long-term adverse effects; in older children, it is generally used as an 

adjuvant to radiotherapy. Radiotherapy-deferral strategies using chemotherapy 

have largely been abandoned in patients older than 12 months (40). 

In spinal ependymomas, gross tumor resection (GTR) is also a major 

prognostic determinant. Advances in microsurgical techniques now allow en bloc 

GTR in most cases, with favorable functional outcomes. Early surgery is 

recommended. Postoperative local radiotherapy is generally reserved for cases 

where GTR is not feasible, and subtotal resection(STR) followed by radiotherapy 

significantly improves progression-free survival (PFS). While the optimal dose 

is debated, doses exceeding 50 Gy may be beneficial (41,42). 

Prognostic Factors 

1. Extent of Surgical Resection: 

The most influential prognostic factor is the completeness of resection. Five-

year survival rates range from 67–85% after GTR, compared to 30–50% after 

subtotal resection. Five-year PFS is 43–64%, and ten-year PFS is 24–53% (21). 
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2. Tumor Grade: 

Histopathological grade strongly impacts prognosis. Five-year survival is 

approximately 71% for WHO Grade II tumors and 57% for Grade III tumors. 

Recurrence rates in supratentorial Grade II tumors are around 12%, increasing to 

46% in Grade III lesions. 

3. Tumor Location: 

Supratentorial ependymomas are often of the RELA fusion–positive subtype, 

which is aggressive and associated with high recurrence. YAP1 fusion tumors 

have a more favorable prognosis. 

Infratentorial ependymomas predominate in children. Complete resection is 

challenging due to proximity to the brainstem and cranial nerve nuclei, and 

incomplete removal is linked to worse outcomes. Among molecular subtypes, 

PF-A tumors have poorer prognosis than PFB, with ten-year survival around 56% 

(43). 

Spinal ependymomas (usually WHO Grade II) are most amenable to total 

resection and generally require less adjuvant radiotherapy. 10 year survival is 

approximately 85%. 

4. Age: 

Adults generally have a more favorable prognosis than children, with ten-year 

survival rates of ~75% compared to 64% in pediatric patients. 

5. Adjuvant Therapy: 

Radiotherapy plays a key role in extending disease-free survival, particularly 

in high-grade or incompletely resected tumors. The role of chemotherapy remains 

limited and is primarily adjunctive. 
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